- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000300000000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Zhong, Yongjian (3)
-
An, Bang (2)
-
Yang, Tianbao (2)
-
Zhou, Xun (2)
-
Adhikari, Bijaya (1)
-
Vu, Hieu (1)
-
Zhu, Liao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Subgraph neural networks have recently gained prominence for subgraph-level predictive tasks, but existing methods either use simple pooling over graph convolutional networks that fail to capture essential subgraph properties or rely on rigid subgraph definitions that limit performance; moreover, they cannot model long-range dependencies between and within subgraphs—an important limitation given real-world networks’ diverse structures. To address this, we propose the first implicit subgraph neural network that captures dependencies across subgraphs and integrates label-aware subgraph-level information, formulating implicit subgraph learning as a bilevel optimization problem and introducing a provably convergent algorithm requiring fewer gradient estimations than standard bilevel methods, achieving superior performance on real-world benchmarks.more » « lessFree, publicly-accessible full text available July 13, 2026
-
An, Bang; Zhou, Xun; Zhong, Yongjian; Yang, Tianbao (, Neural Information Processing Systems)
-
An, Bang; Zhou, Xun; Zhong, Yongjian; Yang, Tianbao (, Neural Information Processing Systems)
An official website of the United States government

Full Text Available